The Meissner effect occurs when you take a superconducting material cooled below its critical temperature and place it in a magnetic field. The magnetic field induces a current that flows through the material, which in turn creates a magnetic field. Much like more typical induction, the magnetic field created by the current acts in the opposite direction to the external magnetic field, and cancels it out, thus stopping any magnetic fields from passing through the material: they instead pass round it. This can be seen in the diagram to the right, where a super conducting material has been surrounded by small bar magnets to illustrate the field lines of magnetic field. The strength of the current that flows around the superconducting material varies as the magnetic flux increases, meaning it's possible to measure tiny changes in magnetic fields. This property of super conducting materials has many applications, the most well-known of which is in superconducting quantum interference devices (or SQUID, for short), which are the main detectors in an MRI scanner.
Sadly, practical uses of this idea are very hard to put into practice. The effect requires a track of magnets, and a superconducting material, which typically has to be cooled to very low temperature, meaning using this in something such as transport very expensive and impractical. However, just this year, it was reported in the scienfitic journal Advanced Materials that scientists have observed superconducting characteristics of graphite at room temperature, though this has yet to be completely confirmed, it's a step forward into seeing superconductors at more normal temperatures. If these obstacles can be overcome, it's possible that quantum locking may one day be a practical solution to many problems.